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Advances in NMR instrumentation and pulse sequence design have resulted in easier acquisition of Resid-
ual Dipolar Coupling (RDC) data. However, computational and theoretical analysis of this type of data has
continued to challenge the international community of investigators because of their complexity and rich
information content. Contemporary use of RDC data has required a-priori assignment, which significantly
increases the overall cost of structural analysis. This article introduces a novel algorithm that utilizes
unassigned RDC data acquired from multiple alignment media (nD-RDC, n P 3) for simultaneous extrac-
tion of the relative order tensor matrices and reconstruction of the interacting vectors in space.

Estimation of the relative order tensors and reconstruction of the interacting vectors can be invaluable
in a number of endeavors. An example application has been presented where the reconstructed vectors
have been used to quantify the fitness of a template protein structure to the unknown protein structure.
This work has other important direct applications such as verification of the novelty of an unknown pro-
tein and validation of the accuracy of an available protein structure model in drug design. More impor-
tantly, the presented work has the potential to bridge the gap between experimental and computational
methods of structure determination.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in instrumentation of Nuclear Magnetic Reso-
nance (NMR) spectrometers in addition to advances in pulse se-
quence design have significantly improved the ease with which
Residual Dipolar Coupling (RDC) data can be acquired. In the recent
decade, RDC data have been used to study the structure and
dynamics of macromolecules including RNA/DNA [1,2], carbohy-
drates [3–5] and proteins [6–16]. More recently, RDC data have
been used successfully in simultaneous structural elucidation or
characterization of internal dynamics in both aqueous [11,17–19]
and membrane [20–25] proteins.

Central to the study and analysis of the RDC data, lays the accu-
rate estimation of alignment tensors, which provide the required
information for characterization of structure or study of internal
motion. Presently, the main method of determining order tensor
estimates from RDC data relies on the costly and time-consuming
requirement of resonance assignment and the existence of a high
resolution structure [26,27]. Some research has been conducted
in obtaining order tensor estimates from unassigned RDC data col-
lected in a single medium by comparison to the background RDC
distribution obtained for an infinite number of uniformly distrib-
ll rights reserved.

.

uted vectors (powder pattern) [28,29]. These methods work rea-
sonably well for certain large proteins. In general, however, the
estimates of the principal order parameters obtained this way
are not sufficiently accurate. Furthermore, it is mathematically
impossible to determine any orientational information using these
methods. Recent work [30,31] has combined methods of estimat-
ing the principal order parameters of the order tensors from unas-
signed RDC data with a known structure to approximate the
orientational components of the order tensor as well. This method
has the advantage of not requiring a high-resolution structure; a
representative of the structure’s protein fold family or the struc-
ture of a closely related homologue will often suffice. However,
the order tensor estimates obtained in this way may not generally
be trustworthy since it still principally assumes adequate sampling
of the RDC space.

Here, we present a method that utilizes unassigned RDC data
collected from three or more alignment media in order to provide
highly accurate relative order tensors (as defined in Section 2.2) for
each of the alignment media. This method is notable for avoiding
the requirements of assignment or a-priori knowledge of the struc-
ture while still being able to determine the relative orientation and
the strength of alignment (principal order parameters) of the order
tensors. An additional consequence of our algorithm is the recon-
struction of the interacting vectors within the principal alignment
frame of the anchor alignment medium (defined in Section 2.2) to
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within two solutions when data from three or more aligning media
are available.

The current version of our presented method provides the coor-
dinates of the vectors in space without their assignment informa-
tion. Despite the missing assignment, the reconstructed vectors
can be of great utility. Here we also present an application of the
reconstructed vectors in identifying the most homologous struc-
ture from a list of structures. These algorithms were implemented
in the free statistical programming language and computing envi-
ronment R (http://www.r-project.org/) and are available upon re-
quest from the corresponding author.

2. Background

2.1. Residual dipolar couplings

Residual dipolar coupling data (RDC) arise from the spin inter-
action between two nuclear magnetic moments and the external
magnetic field (B0) of the NMR instrument. RDC data have provided
many exciting avenues of exploration in recent years. In this arti-
cle, we will not present the practical aspects of data acquisition
and focus only on the relevant theoretical formulation of the phe-
nomenon to facilitate our discussion. The interested readers are re-
ferred to many existing review articles [12,32–36] that have been
presented in the past for additional information.

The RDC between two spin 1/2 nuclei i and j can be formulated
as shown in Eq. (1), assuming a constant inter-nuclear distance.

Dij ¼ �
l0cicjh

ð2prÞ3
3 cos2ðhijðtÞÞ � 1

2

� �
ð1Þ

In this equation, ci, cj are the gyromagnetic ratios of the two inter-
acting nuclei, h is Planck’s constant, r is the distance between the
two nuclei, and hij is the angle between the internuclear vector
and the external magnetic field B0. The angled brackets (h�i) in Eq.
(1) denote the time average dependence of the RDC observable.
Manipulation of this equation can lead to a more commonly listed
formulation of this interaction as shown in Eq. (2).

D ¼ Dmax � ðsxx � x2 þ syy � y2 þ szz � z2 þ 2 � sxy � xyþ 2 � sxz � xz

þ 2 � syz � yzÞ ð2Þ
2.2. Relative order tensor matrix

A more convenient representation of Eq. (2) can be shown in
Eqs. (3) and (4):

D ¼Dmax � vT � S � v ð3Þ

S ¼
sxx sxy sxz

sxy syy syz

sxz syz szz

2
64

3
75 ð4Þ

Where Dmax is the collection of all the constants from Eq. (1), v is the
internuclear vector with the Cartesian coordinates (x, y, z), and S de-
notes the Saupe order tensor matrix [37] or order tensor matrix (OTM)
for short. Any valid order tensor matrix, S, described in the Cartesian
space must be of dimensions 3 � 3 and exhibit symmetric and
traceless properties [26,27,33,38]. As shown previously [26,27], a
valid order tensor can then be decomposed by Eigen decomposition
into its diagonal form as shown in the follwoing equation:

S ¼ RS0RT ð5Þ

S0 in this equation is a diagonal and traceless matrix, and R repre-
sents an Euler rotation matrix [27,39]. The diagonal elements of S0

in this formalism provide information regarding the strength of
alignment and are referred to as the principal order parameters
(POP). The rotation matrix R can be used to obtain orientational
information relating the principal alignment frame [26,27,39] to
the arbitrarily selected molecular frame. The rotation matrix R can
be any valid Euler rotation matrix since the orientation of the
molecular frame (for instance the orientation of a molecule in a
PDB file) with respect to the principal alignment frame is arbitrary.
For simplicity, R can then be decomposed into three distinct rota-
tions about the axes z, y and z as shown in the equation:

Rða; b; cÞ ¼ RzðaÞRyðbÞRzðcÞ ð6Þ

Using the decomposed description of the order tensor, Eq. (3) can be
rewritten as shown in the following equation:

D ¼ Dmax � vTRS0RTv ¼ Dmax � vTR
� �

S0 vTR
� �T ð7Þ

This formulation of the RDC interaction can be conceptualized as re-
describing the Cartesian coordinates of the interacting vector in the
principal alignment frame (PAF) and then using the simpler Eq. (8)
to describe the RDCs. Under this formulation, xo, yo and zo denote
the Cartesian coordinates of the interacting vector described in
the PAF.

D ¼ Dmax � ðsxx � x2
o þ syy � y2

o þ szz � z2
oÞ ð8Þ

Eq. (8) is often written in polar coordinates as shown in Eq. (9) since
it simplifies the representation of each vector to two variables in-
stead of the three variables used in the Cartesian coordinates. This
reduction in the number of variables is a consequence of the nor-
mality constraint of the interacting vectors.

D ¼ Da � ð3 cos2ðhÞ � 1Þ þ 2
3

R sin2ðhÞ cosð2/Þ
� �

ð9Þ

When RDC data are available from multiple alignment media, each
medium’s order tensor is decomposed to result in distinct rotation
matrices denoted by Rj, where j indicates the designation of the
alignment medium as shown in Eq. (10). Each of these rotation
matrices provides an absolute relationship between each alignment
frame and the arbitrarily chosen molecular frame. Alternatively, the
orientational component of the alignment for each of the alignment
frames can be described in relation to an anchor alignment frame as
shown in Eq. (11). Under this formalism, the rotation matrix RA de-
scribes the orientation of the alignment tensor of the anchor med-
ium with respect to the molecular frame and RAj describes the
relative orientation of the jth alignment medium relative to the an-
chor alignment frame. We therefore define relative order tensor SA

j

as described in Eq. (11).

Sj ¼RjS
0
jR

T
j ð10Þ

Sj ¼RjS
0
jR

T
j ¼ ðRARAjÞS0jðRARAjÞT ¼ RAðRAjS

0
jR

T
AjÞR

T
A ¼ RASA

j RT
A ð11Þ

Careful selection of the molecular frame can easily eliminate RA

from the formalism shown in Eq. (11) above. If the molecular frame
is selected to coincide with the alignment frame of the anchor med-
ium, RA will be equivalent to an identity matrix and therefore can be
eliminated from the entire equation.

Because each order tensor is traceless and symmetric, the set of
absolute order tensors for n alignment media can be described by
5n (e.g. 15 variables for three alignment media) independent vari-
ables. Representation of the RDC data acquired from multiple
alignment media in terms of relative order tensors will in total re-
quire the same number of independent variables (5n). However,
one can partition these 5n variables into two sets of 3 and 5n � 3
variables where 3 independent variables are required to describe
the orientational relationship between the MF and PAF of the an-
chor medium (PAFA) and 5n � 3 additional variables are required
to describe the n relative order tensors. As mentioned before, care-
ful selection of the molecular frame will result in the elimination of

http://www.r-project.org/


Fig. 2. 3D-RDC surface topology for a sample set of three relative order tensors with
points corresponding to actual data points for a protein. (a) and (b) Illustrate the
same object from two different views to give a better sense of the 3D-RDC surface’s
unusual topology.
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the 3 variables required to describe the relationship between MF
and PAFA. For example, selection of the MF to be coincident with
the principle alignment frame of the first medium removes three
degrees of freedom, and in the relative order tensor formalism,
12 variables are required to describe three alignment media.

2.3. Theoretical basis for simultaneous estimation of order tensors and
internuclear vectors

When RDC data are collected from multiple alignment media,
chemical shift data can be used to correlate the data. Correlated
RDC data in this context is defined as the RDC observables in each
medium that are originated from a given vector without any
knowledge of its assignment along the primary sequence of the
protein. In this section we present a conceptual discussion of the
reconstruction of interacting vectors using their correlated RDC
data.

Estimation of order tensors from a set of vectors paired with
RDC values through the use of Singular Value Decomposition
(SVD) has been discussed extensively in the literature [26,27,39].
However, there has been little discussion of obtaining the orienta-
tion of the interacting vectors from a given set of order tensors and
correlated RDC data from multiple alignment media. Fig. 1(a) illus-
trates the position of all possible vectors that produce the same va-
lue of RDC for an example alignment tensor. In general, there are
infinite vectors (the red band), which correspond to the same
RDC value. This infinite degeneracy can be reduced to a fourfold
degeneracy (in general) by using RDC data from a second align-
ment medium as shown in Fig. 1(b). Extension of the same logic
will reduce the final degeneracy to twofold by incorporating RDC
data from the third alignment medium. Fig. 1(c) provides an illus-
tration of this conclusion. These two solutions are the exact nega-
tion of one another and cannot be disambiguated from one another
by the inclusion of RDC data from any number of additional align-
ment media. It is important to note that there are exceptions to
what has been shown here and these exceptions have been dis-
cussed further in Section 2.4.

As discussed in Section 2.2, 5n � 3 number of variables are re-
quired to describe n relative order tensors. Furthermore, represent-
ing k individual normalized vectors in polar coordinates requires
2k independent variables. Therefore, simultaneous study of n rela-
tive order tensors and k vectors will require 5n � 3 + 2k indepen-
dent parameters while resulting in nk RDC data points. Since
each RDC data point corresponds to an equation in the variables
describing the k vectors and n relative order tensors, it can be ar-
gued that in theory, simultaneous estimation of relative order ten-
sors and reconstruction of vectors is possible so long as
nk P 5n + 2k � 3. For example when n = 3, k P 12 should suffice
for determining relative order tensors and orientation of internu-
clear vectors simultaneously. In particular, Eq. (12) can be formu-
lated, which provides a complete description of the observed
Fig. 1. Possible locations for a vector with given RDC data in (a) one alignm
RDC values from n alignment media for vector i as a function of
its polar coordinates (hi, /i) and n relative order tensors. Relative
order tensors and the orientation of vectors can be obtained simul-
taneously by solving this system of equations.

Dmax � vT
i � S1 � vi ¼ fS1 ðhi;/iÞ ¼ ri;1

..

.

Dmax � vT
i � Sn � vi ¼ fSnðhi;/iÞ ¼ ri;n

vT
i � vi ¼ 1

8>>>>><
>>>>>:

ð12Þ

This problem can be visualized by noting that this system of RDC
equations (Eq. (12)) defines a mapping between the points on the
surface of the unit sphere to the point (r1, r2, . . ., rn), that character-
izes the RDC values corresponding to that vector in each alignment
medium. The collection of these n dimensional points originated
from an infinite number of randomly distributed vectors defines a
curved surface, denoted as the nD-RDC surface, which is purely a
function of n relative order tensors. The shape of this surface for a
sample set of three order tensors is shown in Fig. 2. There are sev-
eral important points to note here. First, since each vector always
produces the same RDC values as its negation [27,40], each point
on the surface of the nD-RDC surface corresponds to two vectors.
The notable exception to this is the places where the surface inter-
sects itself. The points that lie along any intersection correspond to
4 vectors. In the presence of noisy data, if a point lies in the space
near an intersection where it is close (within the experimental error
tolerance) to two different parts of the 3D-RDC surface, it will be
impossible to know which of the two parts of the surface it origi-
nated from, and instead of 2 vector solutions, this may give rise
to 4 vector solutions. In practice however, this is not a common
occurrence.

It is important to note that the shape and orientation of the nD-
RDC surface (Fig. 2) is invariant to changes in molecular frame. A
ent medium, (b) two alignment media, and (c) three alignment media.



Table 1
All combination of sign degeneracies of relative order tensors

sxy sxz syz x y z

1 + + + + + +
� � �

2 � � + � + +
+ � �

3 � + � + � +
� + �

4 + - - + + -
- - +

Table 2
Order tensors used for simulation of RDC data

�10�4 Sxx Syy Szz a (�) b (�) c (�)

M-I 3.00 5.00 �8.00 0 0 0
M-II �4.00 �6.00 10.00 40 50 60
M-III �2.00 �5.00 7.00 �40 �50 60

Table 3
Five critical components of the order tensors used for simulation of the RDC data

�10�4 sxx sxy sxz syy syz

M-I 3.00 0.00 0.00 5.00 0.00
M-II �0.30 4.08 6.27 �0.61 4.40
M-III 1.07 �2.37 �3.60 �1.46 4.32
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change in the relative orientation of the molecular frame to the an-
chor frame corresponds to a rotation of the infinite set of vectors
distributed along a unit sphere. Because a rotation of a sphere re-
sults in an identical sphere, the nD-RDC surface remains unaf-
fected. The problem of estimating order tensors can then be
conceptualized as performing a best fit of nD-RDC surfaces to the
data, and the problem of solving for vectors can be conceptualized
as taking the inverse of the mapping from vectors to nD-RDC
points. In practice, however, surface fitting is very time consuming
and computationally inefficient. Due to the inefficiency of surface
fitting methods, we are proposing an alternative approach to ob-
tain a solution for Eq. (12). The ability to estimate vectors from or-
der tensors coupled with the ability to estimate order tensors from
vectors suggests the possibility of an iterative approach to estimat-
ing relative order tensors and reconstructing vectors in space.

2.4. Solution space degeneracy of relative order tensors

While the nD-RDC problem is solvable, there may exist a finite
number of degenerate solutions for some instances of nD-RDC data
instead of a single unique solution. Here we will provide an infor-
mal presentation of this phenomenon.

Firstly, for a given set of relative order tensors and a vector ~v,
both~v and�~v produce the same RDC value [27,40]. That is, a vector
and its exact negation always produce the same RDC value in every
possible alignment medium. Secondly, negation of sxy and sxz for all
of the relative order tensors and simultaneous negation of the x-
component of each vector will produce the same exact RDC values.
This, of course, also applies to negating other off-diagonal elements
of the relative order tensors and their corresponding Cartesian
coordinate as shown in Table 1.

At first, this degeneracy may appear to increase the solution
space to eightfold. However, when reconstructing vectors in space,
relative orientation of all vectors with respect to each other is of
critical importance. Negation of the off-diagonal elements of the
relative order tensors will result in the negation of the correspond-
ing coordinate for all vectors in space. Eq. (13) can be employed to
study the effect of the relative orientation of vectors as the result of
this sign toggling.

cosðhÞ ¼ vi � vj ¼ xixj þ yiyj þ zizj ð13Þ

The relative orientation of the vectors with respect to each other is
conserved since the negations of the x, y or z components of all the
vectors results in a cancellation when calculating the relative orien-
tation of the vectors. Note that some combination of these nega-
tions may lead to inversion of space chirality, but will preserve
the relative orientation of vectors in space.

3. Materials and methods

3.1. Residual dipolar couplings

During the testing and evaluation of our methods, we have uti-
lized simulated RDC data from three different proteins: 1A4Y (446
residues), 110M (153 residues) and 1SF0 (69 residues). These three
proteins have been selected on the basis of their sizes to represent
large, medium and small proteins, respectively. Theoretical RDC
data have been computed for these proteins with ±1 Hz error
added from a uniform distribution to simulate experimental noise
using the order tensors described in Tables 2 and 3. Table 2 de-
scribes the order tensors in terms of principal order parameters
and Euler angles. Table 3 lists the five essential elements that are
necessary for complete reconstruction of the same order tensors
as in Table 2. Although both of these tables describe the same order
tensors, the latter representation reduces some ambiguities arising
from the Euler angle representation. Furthermore, it is important
to note that while equivalence of two order tensors can be estab-
lished when their individual elements are equal, the converse is
not true. Two order tensors may be composed of varying individual
order parameters but produce RDC data in agreement to within the
experimental error. It is therefore advisable to perform the com-
parison of two order tensors by observing their corresponding SF
plots as well as comparison of the individual principal order
parameters as demonstrated in Section 4.1. The utility of simulated
RDC data is invaluable to the proper study of a computational
method since the ground truth is known ahead of time.

In addition to the simulated data, we have also used experimen-
tally collected RDC data for the protein 1P7E from the BMRB data-
base [41]. Five sets of RDC data were available for this protein and
all five were used as an illustration of the flexibility of our ap-
proach in accommodating experimental data from more than 3
alignment media.

3.2. Algorithm for simultaneous reconstruction of vectors and
estimation of relative order tensors

Our proposed method operates in two major parts as shown in
Fig. 3. First, using a given set of relative order tensors, the orienta-
tion of corresponding vectors will be constructed in space. During
the second step, a set of relative order tensors are obtained by
using SVD and the reconstructed set of vectors from the first step.
Iteration of these two steps is continued until convergence of the
fitting score. The definition of the objective score utilized in this
algorithm is shown in Eq (14), where K indicates the total number
of vectors and N indicates the total number of alignment media.
Entities Rn

k and Cn
k in this equation denote the experimental and

computed RDC values for the kth vector obtained from alignment
medium n, respectively.

s ¼ 1
K

XK

k¼1

XN

n¼1

ðRn
k � Cn

kÞ
2 ð14Þ

Optimization of the declared objective function (Eq. (14)) is rela-
tively trivial when the proposed initial relative order tensors are



Fig. 3. The algorithm for back-calculation of internuclear vector and relative order
tensor matrix.

Fig. 4. An illustration of systematically generated isotropic vectors on a unit sphere.
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in close proximity of the optimal solution. Since currently there is
no existing method of estimating the orientational components of
the anisotropy from unassigned RDC data, the presented method
is forced to start from randomly selected orientational components
of the relative alignment tensors. The initial principal order param-
eters are roughly estimated based on the observed minimum and
maximum RDC values within each alignment medium. The search
for the optimal principal order parameters is confined to a generous
range provided by the user to assist with a more rapid convergence.
A combination of grid search and simulated annealing [42] have
been implemented as the core optimization engine of our approach
in order to increase the likelihood of convergence to the optimal
solution from a distant starting point. Simulated annealing has been
integrated in order to eliminate the entrapment in local minima
during higher annealing temperatures. Simulated annealing, during
the lower annealing temperatures, will enable fine refinement of
best solutions. Generally, convergence of the algorithm can be
determined by observing the value of the objective function (Eq.
(14)) to become sufficiently low to fall within the experimental er-
ror of the RDC data set. The process of heating and cooling is recom-
mended to be repeated several times to ensure the discovery of a
near global optimal point. Convergence of each instance of search
is normally achieved within 50 steps, which approximately con-
sumes less than a minute of execution time on a typical desktop
computer. Based on empirical observation, the process of optimiza-
tion from a starting random point is recommended to be repeated
10–20 times in order to provide adequate robustness to noisy data
and convergence toward a deeper minimum point. Overall execu-
tion of the presented algorithm is therefore in the order of one to
two hours on a typical single CPU, desktop computer.

The first step in our approach consists of reconstructing the set
of vectors in space from an initial value of the relative order tensors
S. There are two possible approaches to reconstructing a set of vec-
tors from order tensor estimates and RDC data; either a closed
form solution, where the orientation of a vector can be computed
from a given nD-RDC data point, or a search of all possible vectors
on the unit sphere. The former approach is generally preferable
since it yields a solution with theoretically infinite precision in a
fixed computation time. However, our attempt at manipulation
of the system of equations shown in Eq. (12) with symbolic math
program Maple (http://maplesoft.com/) did not yield a closed form
solution. Therefore, our method relies on the latter approach by
creating a finite number of isotropically distributed vectors as
listed in Eq. (15) below. Fig. 4 provides an illustration of isotropi-
cally generated vectors with n = 15.

hij ¼ p
n � i

/ij ¼ 2p j
b2n sinðhijÞcþ1

(
ð15Þ

In this equation, 0 6 i 6 n, 0 6 j 6 b2n sin (hij)c and (h, /)ij denote the
polar coordinates of the internuclear vector. The density of the vec-
tors can be adjusted by the parameter n and the total number of in-
ter-nuclear vectors N can be approximated by Eq. (16). Using this
discrete search mechanism, any internuclear vector can be captured
by this isotropic vector set within an error of �p=

ffiffiffi
2
p

n. During our
experiments, isotropically generated vectors with n = 50 have been
adequate

N ¼ ð0:73þ 1:1275� nÞ2 ð16Þ
3.3. Evaluation of fitness of a template protein structure to the
reconstructed vectors

To demonstrate the utility of constructed vectors in space with-
out assignment, we present its application in evaluation of the fit-
ness of a proposed structure based on unassigned RDC data. The
presented method differs from that of the previously reported
work [30,31]. The new approach proceeds by first reconstructing
the vectors in space followed by evaluation of fitness of any pro-
posed structure based on matching of the reconstructed vectors
to the vectors from the proposed structure. The proposed protein
structure may come from different sources such as computational
modeling tools, homologous proteins from PSI-BLAST, or X-ray
structure for validation.

The general flowchart of our matching algorithm is shown in
Fig. 5. Our matching algorithm consists of a search over all Rzyz

rotations that yield the best matching between the reoriented set
of vectors from the proposed structure and the set of vectors esti-

http://maplesoft.com/


Fig. 5. Algorithm of protein structure assessment.

Table 4
Resulting five critical elements of the relative order tensor estimates for the protein
1A4Y, 110M and 1SF0

Structure Medium sxx � 10�4 sxy � 10�4 sxz � 10�4 syy � 10�4 syz � 10�4

1A4Y M-I 3.18 0.00 0.00 4.97 0.00
M-II �0.66 4.11 6.22 �0.56 4.49
M-III 1.33 �2.33 �3.68 �1.66 4.3

110M M-I 2.96 0.00 0.00 4.78 0.00
M-II �0.7 �3.78 5.89 �0.22 �4.3
M-III 1.44 2.3 �3.55 �1.68 �4.09

1SF0 M-I 3.44 0.00 0.00 5.16 0.00
M-II �0.28 4.84 �6.43 �0.19 �4.74
M-III 0.75 �2.58 3.99 �1.35 �4.72

Table 5
Resulting estimated principal order parameters for the proteins 1A4Y, 110M and 1SF0

Structure Medium Sxx � 10�4 Syy � 10�4 Szz � 10�4

1A4Y M-I 3.18 4.97 �8.14
M-II �4.03 �6.03 1.01
M-III �1.92 �5.13 7.05

110M M-I 2.96 4.78 �7.74
M-II �3.72 �5.89 9.61
M-III �1.83 �4.93 6.75

1SF0 M-I 3.43 5.16 �8.6
M-II �4.36 �6.37 10.7
M-III �2.41 �5.27 7.67
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mated from the RDC data. Matching between two sets of vectors
takes place by first back-calculating the theoretical RDC values
for the proposed structure followed by identifying the best match
to the experimental set of data by using a bipartite matching algo-
rithm [43]. A bipartite matching algorithm seeks to produce a least
cost, matching two sets of data. The bipartite matching algorithm
possesses the advantage of producing an optimal match between
two complete data sets with O(n3) execution time where n is the
number of data points in each set. Note that this is a significant
improvement over the O(n!) execution time that is required for
exploring all possible matching permutations.

Theoretically, it is reasonable to use grid search to find the best
orientation. But in practice, simulated annealing is required to
facilitate the convergence to a near optimal solution. The score
with best orientation is the fitting score of the template protein
structure to the nD-RDC data.

It is inevitable that the estimated relative order tensors will
contain some error due to reconstruction of vectors that may be
in slight violation of geometrical constraints such as dihedral or
bond angle constraints. When presented with vectors that have
been derived from a valid structure, individual vectors are confined
by geometrical constraints defined by the protein structure. These
differences between the reconstructed set of vectors and the pro-
posed set of vectors can be mitigated by utilizing singular value
decomposition to fine-tune the estimated value of S. After the
bipartite match, singular value decomposition can be applied to
the system to obtain a more refined relative order tensor. Only
small adjustments within a given error tolerance are allowed based
on the initial S that was obtained from the previous step. Experi-
ments show that this fine-tuning based on the existence of a tem-
plate structure can effectively improve the precision of relative
order tensor estimates while eliminating any sign degeneracy of
the estimated relative order tensors.

4. Results

4.1. Theoretical RDC data

Theoretically generated RDC data as described in Section 3.1
have been subjected to estimation of the relative order tensors.
The five critical components of the resulting estimated order ten-
sors are listed in Table 4. The results shown in these tables corre-
spond to test proteins 1A4Y, 110M and 1SF0, respectively, and
should closely resemble that of the known relative order tensors
listed in Table 3 in order to indicate a successful estimation.
Although the listed results display a clear resemblance to the origi-
nal order tensors, they are not exact. It is therefore important to
properly quantify the similarity between these results. However,
the comparison of any two given order tensors is not as trivial as
it may appear. It is important to note that simple comparison of
individual elements of two order tensors may be misleading. Indi-
vidual elements of two order tensors may exhibit large differences
(as much as 100%) and yet produce nearly indistinguishable sets of
RDCs. The complexity arises for a number of reasons. Mainly, the
composition of an order tensor exhibits a linear relationship with
respect to the principal order parameters and a quadratic relation-
ship with respect to the orientation of the alignment frame (refer
to Eq. (5)). A more meaningful comparison of any two order tensors
should consist of two separate steps: a comparison of the principal
order parameters and a comparison of orientational components of
the anisotropy. Here, it is adequate to numerically compare the
principal order parameters of two given order tensors and visually
compare the orientational components in the form of a SF-plot as
described before [26,27]. The principal order parameters are listed
in Table 5 for all three proteins. The SF-plots illustrating a visual
comparison of the orientational components of the relative order
tensors are shown for only two proteins (1SF0 and 1A4Y) in
Fig. 6. The SF-plot of the protein 110M has been neglected for brev-
ity. Fig. 6 illustrates all acceptable order tensors that will generate
RDC data within 1Hz of the simulated RDC data. The value of ±1Hz
corresponds to the noise level that was used during the generation
of simulated RDC data. In addition to this cluster of valid order ten-
sors, the estimated order tensor obtained from 3D-RDC analysis
has been superimposed. Without careful examination of these
SF-plots, the location of the estimated relative order tensors is dif-
ficult to observe simply because they are embedded within the
cluster of solutions. These results indicate that our proposed nD-
RDC method is capable of producing a valid order tensor from
RDC data corrupted with ±1 Hz of error. Fig. 7 provides a graphical
representation of the actual backbone N–H vectors of the protein



Fig. 6. Orientational components of the relative alignment tensors for two proteins 1SF0 and 1A4Y compared to all allowed solutions. Sxx, Syy and Szz in these figures denote
the direction of solutions obtained from REDCAT while Exx, Eyy and Ezz denote the direction of the solutions obtained from nD-RDC method.
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1SF0 (in blue) and the reconstructed positions (in white).1 In this
image, the inversion relative of each possible reconstructed vector
has been removed manually. The reconstructed vectors exhibit an
average accuracy of �5� with respect to the original one. This protein
has been intentionally selected because it is the smallest protein and
the scarcity of RDC data will in general lead to a less precise estima-
tion of the order tensor. Reconstruction of vectors in space for this
protein will therefore serve as an example of a more challenging
case.

4.2. Experimental RDC data and evaluation of fitness of a template
structure

The assigned experimental RDC data from the protein 1P7E
were obtained from BMRB [41]. 1P7E is the structure of a 56-resi-
due, immunoglobulin G-binding protein, which had been previ-
ously obtained through refinement of an initial X-ray structure
using RDC data [44]. The backbone N–H RDC data in addition to
the assignment of data and atomic coordinates were used to obtain
the best order tensor solution using the program REDCAT [27]. The
resulting best order tensors are listed in Table 6 for each of the five
alignment media. The last column in this table displays the total
number of RDC data that were available for each alignment med-
ium. Because of the missing data, only the vectors with data pres-
ent in all alignment media were used (a total of 40 vectors). Here
the alignment medium M1 has been selected as the anchor med-
ium and the structure of the protein has been rotated so that the
MF coincides with the PAF of M1. The best order tensors obtained
1 For interpretation of the references to color in the text, the reader is referred to
the web version of this paper.
are used to gauge the success of our proposed nD-RDC analysis
method in estimating the relative order tensors from each of the
five alignment media. The results of the nD-RDC analysis are listed
in Table 7. As before, only the five critical components of each or-
der tensor are listed in this table.

Note that two elements sxy and sxz of the estimated order ten-
sors exhibit sign differences due to the degeneracy property dis-
Fig. 7. A diagram of reconstructed and actual vectors for 1SF0.



Table 6
The order tensor matrices of 1P7EA determined by REDCAT

�10�4 sxx sxy sxz syy syz No. of RDCs

M 1 4.26 0 0 8.87 0 43
M 2 1.15 �0.75 �3.58 4.51 �0.7 43
M 3 �0.38 �3.76 6.23 �3.72 �4.86 43
M 4 2.26 �4.65 2.32 1.22 �6.11 41
M 5 1.18 2.88 0.67 6.67 2.86 42

Table 7
The back-calculated order tensor matrices by applying nD-RDC method

�104 sxx sxy �sxz syy �syz

M 1 2.23 0.00 0.00 9.56 0.00
M 2 0.29 �0.89 3.55 4.66 1.04
M 3 1.25 �3.55 �6.88 �4.04 4.42
M 4 3.12 �4.63 �3.1 1.09 5.79
M 5 �0.57 2.88 �0.49 7.13 �2.86

Fig. 9. Comparison between expected (white) and back-calculated internuclear
vector (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper.)
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cussed in Section 2.4. Aside from the sign degeneracy, the back-cal-
culated order tensor matrices have been well estimated. A graphi-
cal comparison between the expected and estimated elements of
the relative order tensors is illustrated in Fig. 8 after a manual cor-
rection of the sign degeneracy. Each point in this figure corre-
sponds to one of the 23 non-zero elements of the five relative
order tensors. The diagonal line in this figure represents the ideal
case of perfect estimation of the unknown parameters. Based on
the contents of this figure, the proposed method has been very
effective in estimating the five relative order tensors. The overall
effect of a few points that deviate slightly from the ideal line is very
minimal as demonstrated in Section 4.1. When decomposed, the
effect of these slightly deviated elements of the relative order ten-
sors falls within the allowed error for both principal order param-
eters and the orientational components of the anisotropy,

The presented method of nD-RDC analysis is capable of simulta-
neous reconstruction of the interacting vectors and estimation of
the relative order tensor matrices from RDC data alone. Fig. 9 pro-
vides a visual comparison between the actual orientation of the
backbone N–H vectors of the 1P7E and the reconstructed vectors.
In this plot, each inter-nuclear vector is originated from center of
the ball and terminated with a dot on the surface of a unit sphere.
Fig. 8. The relationship between expected and back-calculated S (with signs
corrected).
The back-calculated (blue) and the expected (white) internuclear
vectors are linked by a line to illustrate the magnitude of orienta-
tional error. Based on results shown in Fig. 9, some back calculated
internuclear vectors are more accurate than others. 36 out of 40
internuclear vectors are back-calculated within an error of less
than 4� and 32 vectors are within an error of less than 2�. These re-
sults are in perfect agreement with our theoretical understanding
of the RDC interaction. This varying degree of success is simply
rooted in varying sensitivity of RDC to the orientation of the inter-
acting vector within the alignment frame.

4.3. Assessment of structural fitness

The information regarding the reconstructed vectors in space
can be of great benefit in a number of applications. Here we pres-
ent results that demonstrate the utility of our proposed method of
simultaneous reconstruction of vectors and estimation of relative
order tensors despite the twofold degeneracy in the vector solution
space. Inclusion of information such as a template structure will
automatically resolve degeneracy ambiguities in vectors while pro-
viding the rotational relationship between the molecular frame
and the principal alignment frame of the anchor medium.

Table 8 lists the results for assessment of six structures as po-
tential structural templates. Here we utilize the experimentally
collected RDC data for 1P7E to evaluate the efficacy of a vector
matching approach to identifying the appropriate template. The
template protein structures are collected from CATH homologous
superfamily 3.10.20.10 (Immunoglobulin-Binding Protein) with
sizes ranging from 56 to 70 residues. Application of the algorithm
Table 8
Protein structure assessment using reconstructed vectors from unassigned RDC data
for 1P7E

Template domain RDC fitting score RMSD Size

1P7E:A 0.146 0 56
1IGD:A 0.243 0.32 61
1PGX:A 0.236 0.42 70
1MHH:E 0.319 1.88 63
1MHH:F 0.321 2.04 62
1XF5:M 0.343 2.74 67
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discussed in Section 3.2 to each template protein domain gener-
ated the results listed in Table 8. The first column in this table pro-
vides the PDB identification code. The subsequent columns provide
the score of our matching algorithm, the structural similarity mea-
sured to 1P7E over the backbone Ca atoms and size of each struc-
ture, respectively. Based on these results, not only has the correct
structure been identified, but there is also a reasonable degree of
correlation between the nD-RDC score and the structural
similarity.
5. Discussion and summary

The analysis of unassigned RDC data presented here provides a
mechanism for accurate estimation of the principal order parame-
ters and relative orientational information regarding alignment of
the subject protein in several media. This is the first method that
forgoes the need for assignment of data and the need for preexist-
ing structure. Accurate estimation of the principal order parame-
ters can be invaluable in detecting internal motion between two
domains of the molecular complex. A-priori knowledge of the POPs
can be very beneficial in advancing the currently existing strategies
in structure determination from RDC data [11,13,17,39,45]. Be-
cause of its minimum data requirement (three RDC data per vector
from at least 12 vectors) our proposed method may provide new
avenues of structure determination in challenging cases such as
membrane proteins.

Accurate estimation of the orientational components of anisot-
ropy in addition to the POPs, extends the utility of our proposed
work in novel directions. This report has demonstrated the suc-
cessful use of the knowledge of the relative order tenors in recon-
structing the interacting vectors. As an example application,
successful identification of the most homologous protein structure
has been demonstrated.

The apparent close correlation between the score of the pro-
posed method and the backbone rmsd of structures can be sugges-
tive of many exciting applications of this new approach. It is easy
to envision a novel protein target selection mechanism for use by
the community of PSI and structural genomics initiatives. A more
effective means of target selection will assist in rapid completion
of the most diverse and inclusive set of protein structures. In addi-
tion, the proposed method may also be deployed as the means to
bridge the gap between the experimental and computational ap-
proaches to protein structure determination. Often times, protein
modeling programs produce a list of most likely structures. These
structures may exhibit as much as 11 Å structural diversity mea-
sured over the backbone Ca atoms [30]. Existence of methods for
validation and/or selection of the correct structure from a list of
proposed structures by using an affordable set of experimental
data (unassigned RDC data) may be of great benefit. A reliable
and theoretically sound method can help in validating a computa-
tionally modeled structure with a small amount of inexpensively
acquired experimental data. The structure of an unknown protein
can be predicted by computational methods or determined by
experimental methods. The computational methods are considered
cheap and fast, but the quality of the prediction still depends on a
number of factors. Therefore, blind acceptance of the computa-
tional modeling results is still not a common practice. On the other
hand, experimental methods can determine protein structure with
high resolution at expensive cost and a long data acquisition and
analysis time. In experimental data collection procedures, RDC
data are relatively easy to collect while NOE data are much more
costly. Although a small amount of unassigned RDC data does
not provide enough information for construction of a high-resolu-
tion protein structure, it can play an important role in filtration of
impossible structures and evaluation of the fitness of a proposed
protein structure, which could be selected from either computa-
tional methods or by identifying homologous proteins.
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